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Why this topic?

Motivation

[Sausset, Tarjus, Viot ’08]

6.4. Computation of hyperbolic planforms 103

(a) χ1 : G, the corresponding eigenvalue

is λ = 23.0790.

(b) χ2 : G0κ, the corresponding eigen-

value is λ = 91.4865.

(c) χ3 : G0κ� , the corresponding eigen-

value is λ = 32.6757.

(d) χ4 : G, the corresponding eigenvalue

is λ = 222.5434.

Figure 6.7: The four H-planforms with their corresponding eigenvalue associated

with the four irreducible representations of dimension 1, see text.

[Chossat, Faye, Faugeras ’11]

(a)

(b) 5 segments (c) 50 segments

(d) 200 segments (e) 500 segments

Fig. 13. The regular octagon with opposite sides identified is the fundamental domain of a compact surface of constant negative curvature with
genus 2. These figures show the trajectories of a particular point starting from the origin of the Poincaré discwith an angular deviationof iO~from
a closed periodic trajectory. Figure (a) shows the trajectory running through the tessellation; fig. (b) shows the trajectory through the first five
domains broken into five segments and plotted in the fundamental domain; figs. (c), (d) and (e) show the evolution through 50, 200, 500 segments.
(The seeming concentration of the trajectories at the corners disappears ifwe measure the areas in the correct non-Euclidean metric, since the
seeming size of a patch also decreases as we shift the patch toward the boundary.)

136

[Balazs, Voros ’86]
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Why this topic?

State of the art

Closed Euclidean manifolds
Algorithms 2D [Mazón, Recio ’97], 3D [Dolbilin, Huson ’97], dD [Caroli, Teillaud ’16]

Software (square/cubic flat torus) 2D [Kruithof ’13], 3D [Caroli, Teillaud ’09]

Closed hyperbolic manifolds
Algorithms 2D, genus 2 [Bogdanov, Teillaud, Vegter, SoCG’16]

Software (Bolza surface) [I., Teillaud, SoCG’17]

→ submitted to
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Why this topic?

Delaunay triangulations in the Euclidean plane
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triangulation = simplicial complex!
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What is a hyperbolic surface?
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What is a hyperbolic surface?

Poincaré model of the hyperbolic plane H2

H∞
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What is a hyperbolic surface?

Hyperbolic translations

Special case: axis = diameter
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q a(q)

`(a)

> `(a)



What is a hyperbolic surface?

Hyperbolic translations

Side-pairing transformation
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What is a hyperbolic surface?

Hyperbolic translations

Non-commutative!
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What is a hyperbolic surface?

Tilings of the Euclidean and hyperbolic planes

M. Ebbens, I. Iordanov, M. Teillaud, G. Vegter Delaunay triangulations of symmetric hyperbolic surfaces 14 / 44



What is a hyperbolic surface?

Tiling of the hyperbolic plane with octagons

aa

b

b

c

c

d

d

M. Ebbens, I. Iordanov, M. Teillaud, G. Vegter Delaunay triangulations of symmetric hyperbolic surfaces 15 / 44



What is a hyperbolic surface?

Tiling of the hyperbolic plane with octagons

M. Ebbens, I. Iordanov, M. Teillaud, G. Vegter Delaunay triangulations of symmetric hyperbolic surfaces 15 / 44



What is a hyperbolic surface?

Tiling of the hyperbolic plane with octagons

a

M. Ebbens, I. Iordanov, M. Teillaud, G. Vegter Delaunay triangulations of symmetric hyperbolic surfaces 15 / 44



What is a hyperbolic surface?

Tiling of the hyperbolic plane with octagons

a

ab

M. Ebbens, I. Iordanov, M. Teillaud, G. Vegter Delaunay triangulations of symmetric hyperbolic surfaces 15 / 44



What is a hyperbolic surface?

Tiling of the hyperbolic plane with octagons

a

ab
abc

M. Ebbens, I. Iordanov, M. Teillaud, G. Vegter Delaunay triangulations of symmetric hyperbolic surfaces 15 / 44



What is a hyperbolic surface?
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What is a hyperbolic surface?

Tiling of the hyperbolic plane with octagons
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What is a hyperbolic surface?

The flat torus and the Bolza surface

Euclidean: translation group

Γ1 =
〈
a, b

∣∣ abab = 1

〉
Flat torus: M1 = E2/Γ1
with projection map π1 : E2 →M1

Hyperbolic: Fuchsian group

Γ2 =
〈
a, b, c, d | abcdabcd = 1

〉
Bolza surface: M2 = H2/Γ2
with projection map π2 : H2 →M2
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What is a hyperbolic surface?

Symmetric hyperbolic surfaces of genus g ≥ 2

Let Γg : Fuchsian group with finite presentation similar to Bolza
→ 2g generators, single relation

Symmetric hyperbolic surface: Mg = H2/Γg , g ≥ 2

with natural projection mapping πg : H2 →Mg
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g = 2 g = 3 g = 4 g = 5

angle sum = 2π for all 4g-gons!



What is a hyperbolic surface?

Dirichlet regions

Voronoi diagram of ΓgO for g = 2
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What is a hyperbolic surface?

Dirichlet regions

aa

b

b

c
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d
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Fundamental domain Dg = Dirichlet region of O for Γg
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angle sum = 2π

here for g = 2



How to triangulate a hyperbolic surface?
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How to triangulate a hyperbolic surface?

Validity condition [BTV16]
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S set of points in Dg



How to triangulate a hyperbolic surface?

Validity condition [BTV16]
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orbits ΓgS in H2



How to triangulate a hyperbolic surface?

Validity condition [BTV16]

M. Ebbens, I. Iordanov, M. Teillaud, G. Vegter Delaunay triangulations of symmetric hyperbolic surfaces 23 / 44

Delaunay triangulation in H2

DTH(ΓgS)



How to triangulate a hyperbolic surface?

Validity condition [BTV16]
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projection of DTH(ΓgS) on the surface Mg

→ not necessarily a simplicial complex!

double edges

double edges
and/or loops
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projection of DTH(ΓgS) on the surface Mg

→ not necessarily a simplicial complex!

Systole of a surface = minimum length of a
non-contractible loop on the surface



How to triangulate a hyperbolic surface?

Validity condition [BTV16]

δS <
1
2sys(Mg ), where

DTMg (S) := πg (DTH(ΓgS))
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projection of DTH(ΓgS) on the surface Mg

→ is a simplicial complex, if

δS = diameter of largest disks in H2

not containing any point of ΓgS



How to triangulate a hyperbolic surface?

Computing Delaunay triangulations of Mg

Use set of dummy points Qg that satisfies the validity condition:

S := Qg
⋃

P =⇒ δS <
1
2sys(Mg ) always

Algorithm for computing Delaunay triangulations of Mg [BTV16]

initialize DTMg with a set Qg that satisfies the validity condition;
insert input points P in the triangulation;
remove points of Qg from the triangulation, if possible.

→ condition preserved with insertion of new points
→ diameter of largest empty disks cannot grow

→ final triangulation might contain dummy points
→ if input points too few and/or badly distributed
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How is the triangulation represented?

Problem statement

To compute DTMg (S), we need to choose what to store.

Requirement: all input points lie in Dg
→ unique representative in Dg ⊂ H2 for each point on Mg

Question: How to choose a unique representative for each face?
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How is the triangulation represented?

Inclusion property

Let S ⊂ Dg be a point set such that
δS <

1
2 sys(Mg ).

Let σ be a face of DTH(ΓgS) with at
least one vertex in Dg

⇒ σ is contained in DN

Proof:
for g = 2 → [IT17]

for g ≥ 2 → [Ebbens 2018]
Matthijs’ talk  
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DN



How is the triangulation represented?

Canonical representatives of faces

Canonical representative: face with
at least one vertex in Dg
→ other vertices will be in DN

To make it unique:
→ choose the face closest to
the “first” Dirichlet neighbor
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How is the triangulation represented?

triangulation data structure

ν1v1p1
p2

p0
ν0v0

, ν2v2

f
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How is the triangulation represented?

Canonical representatives can cross the boundary

pq

r

a(p) a(q)

a(r)
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How is the triangulation represented?

extended triangulation data structure

a(p)
q

r

ν0 = 1

ν2 =
a

ν1 = a q

r

p
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What is needed for a triangulation in higher genus?
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What is needed for a triangulation in higher genus?

An initial set of dummy points

For M2, a set of dummy points was given [BTV16]. In general?

The idea is to generate dummy points:
1 Start with the set Wg of Weierstrass points for Mg

→ origin, one vertex, and midpoints of half the sides of the 4g-gon
2 Compute the images of these points in DN

3 Compute their hyperbolic Delaunay triangulation in H2

4 Apply Delaunay refinements to satisfy condition ← strategies!

[Ebbens, 2018]

sys(Mg ) = 2 arcosh
(

1 + 2 cos
(

π
2g

))
Matthijs’ talk  
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What results do we have so far?
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What results do we have so far?

Implementation

Available code:
triangulations in H2 (non-periodic)
triangulations of M2 (periodic)
generate dummy points with different strategies

Todo:
Put the pieces together

Difficulties:
Numerical operations with CORE::Expr
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}
https://imiordanov.github.io/code

https://imiordanov.github.io/code


What results do we have so far?

Computer algebraic issues

p

q

r

p

qr

s

Combinatorial validity of DTMg

m
Exact evaluation of predicates

Assume rational input points, approximate W-points and circumcenters.

Hyperbolic translations include algebraic numbers:

Tk =

 cot( π
4g ) exp( ikπ

2g )
√

cot2( π
4g )− 1

exp(− ikπ
2g )

√
cot2( π

4g )− 1 cot( π
4g )


→ images of rational points have algebraic coordinates!
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What comes next?
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What comes next?

Future directions

Generalization to arbitrary hyperbolic structures
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Thank you!
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