Delaunay triangulations of symmetric hyperbolic surfaces

Matthijs Ebbens Monique Teillaud Iordan Iordanov Gert Vegter

university of

Curves and Surfaces 2018 Arcachon, France

Outline

- 1 Why this topic?
- 2 What is a hyperbolic surface?
- 3 | How to triangulate a hyperbolic surface?
- 4 How is the triangulation represented?
- 5 What is needed for a triangulation in higher genus?
- 6 What results do we have so far?
- 7 What comes next?

Motivation

[Sausset, Tarjus, Viot '08]

[Chossat, Faye, Faugeras '11]

[Balazs, Voros '86]

State of the art

Closed Euclidean manifolds

- Algorithms 2D [Mazón, Recio '97], 3D [Dolbilin, Huson '97], dD [Caroli, Teillaud '16]
- Software (square/cubic flat torus) 2D [Kruithof '13], 3D [Caroli, Teillaud '09]

Closed hyperbolic manifolds

- Algorithms
- Software (Bolza surface)
- 2D, genus 2 [Bogdanov, Teillaud, Vegter, SoCG'16]
 - [I., Teillaud, SoCG'17]
 - \rightarrow submitted to \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

triangulation = simplicial complex!

Outline

- 1 Why this topic?
- 2 What is a hyperbolic surface?
- 3 | How to triangulate a hyperbolic surface?
- 4 How is the triangulation represented?
- 5 What is needed for a triangulation in higher genus?
- 6 What results do we have so far?
- 7 What comes next?

Poincaré model of the hyperbolic plane \mathbb{H}^2

Hyperbolic translations

 ${\sf Special\ case:\ axis=diameter}$

Hyperbolic translations

Side-pairing transformation

Hyperbolic translations

Non-commutative!

Tilings of the Euclidean and hyperbolic planes

The flat torus and the Bolza surface

Euclidean: translation group

$$\Gamma_1 = \langle a, b \mid ab\overline{a}\overline{b} = 1 \rangle$$

Flat torus: $\mathbb{M}_1 = \mathbb{E}^2/\Gamma_1$ with projection map $\pi_1 : \mathbb{E}^2 \to \mathbb{M}_1$

Hyperbolic: Fuchsian group

$$\Gamma_2 = \langle a, b, c, d \mid abcd\overline{a}\overline{b}\overline{c}\overline{d} = 1 \rangle$$

Bolza surface: $\mathbb{M}_2 = \mathbb{H}^2/\Gamma_2$ with projection map $\pi_2: \mathbb{H}^2 \to \mathbb{M}_2$

The flat torus and the Bolza surface

Euclidean: translation group

$$\Gamma_1 = \left\langle a, b \mid ab\overline{a}\overline{b} = 1 \right\rangle$$

Flat torus: $\mathbb{M}_1 = \mathbb{E}^2/\Gamma_1$ with projection map $\pi_1 : \mathbb{E}^2 \to \mathbb{M}_1$

Hyperbolic: Fuchsian group

$$\Gamma_2 = \langle a, b, c, d \mid abcd\overline{a}\overline{b}\overline{c}\overline{d} = 1 \rangle$$

Bolza surface: $\mathbb{M}_2 = \mathbb{H}^2/\Gamma_2$ with projection map $\pi_2 : \mathbb{H}^2 \to \mathbb{M}_2$

Symmetric hyperbolic surfaces of genus $g \ge 2$

angle sum = 2π for all 4g-gons!

Let Γ_g : Fuchsian group with finite presentation similar to Bolza $\rightarrow 2g$ generators, single relation

Symmetric hyperbolic surface: $\mathbb{M}_g=\mathbb{H}^2/\Gamma_g$, $g\geq 2$ with natural projection mapping $\pi_g:\mathbb{H}^2\to\mathbb{M}_g$

Dirichlet regions

Voronoi diagram of $\Gamma_g O$ for g = 2

Dirichlet regions

Fundamental domain $D_g = \text{Dirichlet region of } O \text{ for } \Gamma_g$

here for g = 2

Outline

- 1 Why this topic?
- 2 What is a hyperbolic surface?
- 3 How to triangulate a hyperbolic surface?
- 4 How is the triangulation represented?
- 5 What is needed for a triangulation in higher genus?
- 6 What results do we have so far?
- 7 What comes next?

[BTV16]

S set of points in D_g

[BTV16]

orbits $\Gamma_g S$ in \mathbb{H}^2

[BTV16]

Delaunay triangulation in \mathbb{H}^2 $DT_{\mathbb{H}}(\Gamma_g S)$

projection of $DT_{\mathbb{H}}(\Gamma_g S)$ on the surface \mathbb{M}_g

 \rightarrow not necessarily a simplicial complex!

[BTV16]

projection of $DT_{\mathbb{H}}(\Gamma_{\sigma}S)$ on the surface \mathbb{M}_{σ}

 \rightarrow not necessarily a simplicial complex!

Systole of a surface = minimum length of a non-contractible loop on the surface

Validity condition

[BTV16]

projection of $DT_{\mathbb{H}}(\Gamma_g S)$ on the surface \mathbb{M}_g

ightarrow is a simplicial complex, if

$$\delta_S < rac{1}{2} {\sf sys}(\mathbb{M}_g), \quad {\sf where}$$

 $\delta_S=$ diameter of largest disks in \mathbb{H}^2 not containing any point of $\Gamma_g S$

$$extstyle extstyle extstyle ag{DT}_{\mathbb{H}}(extstyle S) := \pi_{ extstyle g}(extstyle ag{DT}_{\mathbb{H}}(\Gamma_{ extstyle g} extstyle S))$$

Computing Delaunay triangulations of \mathbb{M}_{φ}

Use set of dummy points Q_g that satisfies the validity condition:

$$S:=Q_g\bigcup P\Longrightarrow \delta_S<rac{1}{2}\mathsf{sys}(\mathbb{M}_g)$$
 always

Computing Delaunay triangulations of \mathbb{M}_g

Use set of dummy points Q_g that satisfies the validity condition:

$$S:=Q_g\bigcup P\Longrightarrow \delta_S<rac{1}{2}{
m sys}(\mathbb{M}_g)$$
 always

Algorithm for computing Delaunay triangulations of \mathbb{M}_g

[BTV16]

- initialize $DT_{\mathbb{M}_{\sigma}}$ with a set Q_{g} that satisfies the validity condition;
- insert input points *P* in the triangulation;
- remove points of Q_g from the triangulation, if possible.
- → condition preserved with insertion of new points
 - \rightarrow diameter of largest empty disks cannot grow
- → final triangulation might contain dummy points
 - \rightarrow if input points too few and/or badly distributed

Outline

- 1 Why this topic?
- 2 What is a hyperbolic surface?
- 3 How to triangulate a hyperbolic surface?
- 4 How is the triangulation represented?
- 5 What is needed for a triangulation in higher genus?
- 6 What results do we have so far?
- 7 What comes next?

Problem statement

To compute $DT_{\mathbb{M}_g}(S)$, we need to *choose* **what** to store.

Problem statement

To compute $DT_{\mathbb{M}_g}(S)$, we need to *choose* **what** to store.

Requirement: all input points lie in D_g

ightarrow unique representative in $D_g\subset \mathbb{H}^2$ for each point on \mathbb{M}_g

Problem statement

To compute $DT_{\mathbb{M}_g}(S)$, we need to *choose* what to store.

Requirement: all input points lie in D_g

ightarrow unique representative in $D_g\subset \mathbb{H}^2$ for each point on \mathbb{M}_g

Question: How to choose a unique representative for each face?

Inclusion property

Let $S \subset D_g$ be a point set such that $\delta_S < \frac{1}{2} \operatorname{sys}(\mathbb{M}_g)$.

Let σ be a face of $DT_{\mathbb{H}}(\Gamma_{\mathfrak{g}}S)$ with at least one vertex in D_{g}

$$\Rightarrow \sigma$$
 is contained in D_N

Proof:

- for $g = 2 \rightarrow$ [IT17]
- for $g \ge 2 \rightarrow$ [Ebbens 2018] Matthijs' talk →

Canonical representatives of faces

Canonical representative: face with

at least one vertex in D_{g}

 \rightarrow other vertices will be in D_N

Canonical representatives of faces

Canonical representative: face with

at least one vertex in D_{g}

 \rightarrow other vertices will be in D_N

To make it unique:

 \rightarrow choose the face closest to the "first" Dirichlet neighbor

Canonical representatives of faces

Canonical representative: face with

at least one vertex in D_{g}

 \rightarrow other vertices will be in D_N

To make it unique:

 \rightarrow choose the face closest to the "first" Dirichlet neighbor

CGAL triangulation data structure

Canonical representatives can cross the boundary

CGAL extended triangulation data structure

Outline

- 1 Why this topic?
- 2 What is a hyperbolic surface?
- 3 How to triangulate a hyperbolic surface?
- 4 How is the triangulation represented?
- 5 What is needed for a triangulation in higher genus?
- 6 What results do we have so far?
- 7 What comes next?

An initial set of dummy points

For M_2 , a set of dummy points was given [BTV16]. In general?

An initial set of dummy points

For \mathbb{M}_2 , a set of dummy points was given [BTV16]. In general?

The idea is to **generate** dummy points:

- **1** Start with the set W_g of Weierstrass points for \mathbb{M}_g \rightarrow origin, one vertex, and midpoints of half the sides of the 4g-gon
- 2 Compute the images of these points in D_N
- 3 Compute their hyperbolic Delaunay triangulation in \mathbb{H}^2
- 4 Apply Delaunay refinements to satisfy condition

← strategies!

An initial set of dummy points

For M_2 , a set of dummy points was given [BTV16]. In general?

The idea is to generate dummy points:

- I Start with the set W_g of Weierstrass points for \mathbb{M}_g \rightarrow origin, one vertex, and midpoints of half the sides of the 4g-gon
- 2 Compute the images of these points in D_N
- 3 Compute their hyperbolic Delaunay triangulation in \mathbb{H}^2
- 4 Apply Delaunay refinements to satisfy condition

← strategies!

[Ebbens, 2018]

$$\operatorname{\mathsf{sys}}(\mathbb{M}_g) = 2\operatorname{\mathsf{arcosh}}\left(1 + 2\operatorname{\mathsf{cos}}\left(\frac{\pi}{2g}\right)\right)$$

Matthijs' talk ↔

Outline

- 1 Why this topic?
- 2 What is a hyperbolic surface?
- 3 | How to triangulate a hyperbolic surface?
- 4 How is the triangulation represented?
- 5 What is needed for a triangulation in higher genus?
- 6 What results do we have so far?
- 7 What comes next?

Implementation

Available code:

```
 \begin{array}{c} \blacksquare \text{ triangulations in } \mathbb{H}^2 \text{ (non-periodic)} \\ \blacksquare \text{ triangulations of } \mathbb{M}_2 \text{ (periodic)} \end{array} \right\} \\ \text{https://imiordanov.github.io/code}
```

generate dummy points with different strategies

Todo:

Put the pieces together

Difficulties:

■ Numerical operations with CORE::Expr

Computer algebraic issues

Assume rational input points, approximate W-points and circumcenters.

Computer algebraic issues

Assume rational input points, approximate W-points and circumcenters.

Hyperbolic translations include algebraic numbers:

$$T_k = \begin{bmatrix} \cot(\frac{\pi}{4g}) & \exp(\frac{ik\pi}{2g})\sqrt{\cot^2(\frac{\pi}{4g}) - 1} \\ \exp(-\frac{ik\pi}{2g})\sqrt{\cot^2(\frac{\pi}{4g}) - 1} & \cot(\frac{\pi}{4g}) \end{bmatrix}$$

 \rightarrow images of rational points have algebraic coordinates!

Outline

- 1 Why this topic?
- 2 What is a hyperbolic surface?
- 3 | How to triangulate a hyperbolic surface?
- 4 How is the triangulation represented?
- 5 What is needed for a triangulation in higher genus?
- 6 What results do we have so far?
- 7 What comes next?

Future directions

Generalization to arbitrary hyperbolic structures

Thank you!

