2D hyperbolic and periodic hyperbolic triangulations

Iordan Iordanov Monique Teillaud

CGAL Developer Meeting, March 2018
Nancy, France
Outline

1 | Introduction
2 | Triangulations in the hyperbolic plane
3 | Periodic triangulations in the hyperbolic plane
4 | Data Structure
5 | Incremental Insertion
6 | Results
7 | Future work
Outline

1 | Introduction

2 | Triangulations in the hyperbolic plane

3 | Periodic triangulations in the hyperbolic plane

4 | Data Structure

5 | Incremental Insertion

6 | Results

7 | Future work
Motivation

Applications

[Sausset, Tarjus, Viot]

[Chossat, Faye, Faugeras]

[Balazs, Voros]
State of the art

Hyperbolic Delaunay simplicial complexes

- Algorithm
 [Bogdanov, Devillers, Teillaud, JoCG’14]
- Software
 [Bogdanov, Teillaud, cgal-public-dev]

Closed Euclidean manifolds

- Algorithms
 2D [Mazón, Recio], 3D [Dolbilin, Huson], dD [Caroli, Teillaud, DCG’16]
- Software (square/cubic flat torus)
 2D → Periodic_2_triangulation_2
 3D → Periodic_3_triangulation_3

Closed hyperbolic manifolds

- Algorithms
 2D, genus 2 [Bogdanov, Teillaud, Vegter, SoCG’16]
- Software (Bolza surface)
 [I., Teillaud, SoCG’17]
Outline

1. Introduction
2. Triangulations in the hyperbolic plane
3. Periodic triangulations in the hyperbolic plane
4. Data Structure
5. Incremental Insertion
6. Results
7. Future work
Poincaré model of the hyperbolic plane \mathbb{H}^2
Hyperbolic Delaunay triangulations

- Hyperbolic circles \equiv Euclidean circles \Rightarrow reuse predicates
- If circumcircle intersects Poincaré disk, simplex is not hyperbolic! \rightarrow filter out non-hyperbolic faces and edges
- Only circumcenters (Voronoi points) have non-rational coordinates
Hyperbolic Delaunay triangulations

- Hyperbolic circles \equiv Euclidean circles \Rightarrow reuse predicates
- If circumcircle intersects Poincaré disk, simplex is not hyperbolic!
 \Rightarrow filter out non-hyperbolic faces and edges
- Only circumcenters (Voronoi points) have non-rational coordinates
- Class Hyperbolic_Delaunay_triangulation_2 extends Delaunay_triangulation_2
Hyperbolic Delaunay triangulations

- Hyperbolic circles \equiv Euclidean circles \Rightarrow reuse predicates
- If circumcircle intersects Poincaré disk, simplex is not hyperbolic!
 \Rightarrow filter out non-hyperbolic faces and edges
- Only circumcenters (Voronoi points) have non-rational coordinates
- Class Hyperbolic_Delaunay_triangulation_2 extends Delaunay_triangulation_2
- Two traits classes available:
 - Traits based on Circular_kernel_2
 - Traits with a Kernel template, to use with CORE::Expr
Hyperbolic Delaunay triangulations

- Hyperbolic circles \equiv Euclidean circles \Rightarrow reuse predicates
- If circumcircle intersects Poincaré disk, simplex is not hyperbolic!
 \rightarrow filter out non-hyperbolic faces and edges
- Only circumcenters (Voronoi points) have non-rational coordinates
- Class Hyperbolic_Delaunay_triangulation_2 extends Delaunay_triangulation_2
- Two traits classes available:
 - Traits based on Circular_kernel_2
 - Traits with a Kernel template, to use with CORE::Expr
- Code used to be in
cgal-public-dev/Hyperbolic_triangulation_2-MBogdanov
 \rightarrow now in Periodic_4_hyperbolic_triangulation_2-IIordanov
Hyperbolic Delaunay triangulations

- Hyperbolic circles ≡ Euclidean circles ⇒ reuse predicates
- If circumcircle intersects Poincaré disk, simplex is not hyperbolic! → filter out non-hyperbolic faces and edges
- Only circumcenters (Voronoi points) have non-rational coordinates
- Class Hyperbolic_Delaunay_triangulation_2 extends Delaunay_triangulation_2
- Two traits classes available:
 - Traits based on Circular_kernel_2
 - Traits with a Kernel template, to use with CORE::Expr
- Code used to be in
 - cgal-public-dev/Hyperbolic_triangulation_2-MBogdanov
 → now in Periodic_4_hyperbolic_triangulation_2-IIordanov
- Demo
Outline

1 | Introduction

2 | Triangulations in the hyperbolic plane

3 | Periodic triangulations in the hyperbolic plane

4 | Data Structure

5 | Incremental Insertion

6 | Results

7 | Future work
Motivation

Periodic triangulations in the Euclidean plane
Motivation

Periodic triangulations in the hyperbolic plane
Hyperbolic translations

I. Iordanov & M. Teillaud
Hyperbolic translations

non-commutative!

I. Iordanov & M. Teillaud
Bolza surface

Fuchsian group \mathcal{G} with finite presentation

$$\mathcal{G} = \langle a, b, c, d \mid abcd\bar{a}\bar{b}\bar{c}\bar{d} \rangle$$

\mathcal{G} contains only translations (and 1)

Bolza surface

$$\mathcal{M} = \mathbb{H}^2 / \mathcal{G}$$

with projection map $\pi_\mathcal{M} : \mathbb{H}^2 \to \mathcal{M}$
Bolza surface

Fuchsian group \(\mathcal{G} \) with finite presentation

\[\mathcal{G} = \langle a, b, c, d \mid abcd\bar{a}\bar{b}\bar{c}\bar{d} \rangle \]

\(\mathcal{G} \) contains only translations (and 1)

Bolza surface

\[\mathcal{M} = \mathbb{H}^2 / \mathcal{G} \]

with projection map \(\pi_M : \mathbb{H}^2 \to \mathcal{M} \)

\[\mathcal{A} = \begin{bmatrix} a, b, c, \bar{d}, \bar{a}, b, \bar{c}, d \end{bmatrix} = \begin{bmatrix} g_0, g_1, \ldots, g_7 \end{bmatrix} \]

\[g_k = \begin{bmatrix} \alpha & \beta_k \\ \bar{\beta}_k & \bar{\alpha} \end{bmatrix}, \quad g_k(z) = \frac{\alpha z + \beta_k}{\beta_k z + \bar{\alpha}}, \quad \alpha = 1 + \sqrt{2}, \quad \beta_k = e^{ik\pi/4}\sqrt{2\alpha} \]
Bolza surface

Periodic triangulations in the hyperbolic plane

I. Iordanov & M. Teillaud
Hyperbolic octagon

Voronoi diagram of GO
Fundamental domain $\mathcal{D}_O = \text{Dirichlet region of } O$
Hyperbolic octagon

“Original” domain \mathcal{D}: contains exactly one point of each orbit
How do we triangulate the Bolza surface?
How do we triangulate the Bolza surface?
Periodic triangulations in the hyperbolic plane

How do we triangulate the Bolza surface?
How do we triangulate the Bolza surface?

\[\pi_M(DT_H(GS)) \]
How do we triangulate the Bolza surface?

Systole \(\text{sys}(\mathcal{M}) = \) minimum length of a non-contractible loop on \(\mathcal{M} \)

\[
\pi_\mathcal{M}(DT_H(GS))
\]
How do we triangulate the Bolza surface?

Systole $\text{sys}(\mathcal{M}) =$ minimum length of a non-contractible loop on \mathcal{M}

S set of points in \mathbb{H}^2

$\delta_S =$ diameter of largest disks in \mathbb{H}^2 not containing any point of $\mathcal{G}S$

$\delta_S < \frac{1}{2} \text{sys}(\mathcal{M})$ \hspace{1cm} [BTV16]

$\Rightarrow \pi_{\mathcal{M}}(DT_{\mathbb{H}}(\mathcal{G}S)) = DT_{\mathcal{M}}(S)$

is a simplicial complex

\Rightarrow The usual incremental algorithm can be used \hspace{1cm} [Bowyer]
Algorithm [BTV16]

To construct the Delaunay triangulation of a point set S, we use dummy points:

1. initialize with dummy points
2. insert points in S
3. remove dummy points

→ result may contain dummy points!
Outline

1 | Introduction
2 | Triangulations in the hyperbolic plane
3 | Periodic triangulations in the hyperbolic plane
4 | Data Structure
5 | Incremental Insertion
6 | Results
7 | Future work
Notation

\(g(O), \ g \in \mathcal{G}, \) denoted as \(g \)

\(\mathcal{D}_g = g(\mathcal{D}_O), \ g \in \mathcal{G} \)

\(\mathcal{N} = \{ g \in \mathcal{G} \mid \mathcal{D}_g \cap \mathcal{D}_O \neq \emptyset \} \)

\[\mathcal{D}_\mathcal{N} = \bigcup_{g \in \mathcal{N}} \mathcal{D}_g \]
Property of $\mathcal{DT}_\mathcal{H}(\mathcal{GS})$

$S \subset \mathcal{D}$ input point set
s.t. criterion $\delta_S < \frac{1}{2} \text{sys}(\mathcal{M})$ holds

σ face of $\mathcal{DT}_\mathcal{H}(\mathcal{GS})$ with at least one vertex in \mathcal{D}

$\rightarrow \sigma$ is contained in $\mathcal{D}_\mathcal{N}$
Canonical representative of a face

Each face of $DT_M(S)$ has infinitely many pre-images in $DT_H(GS)$.
Canonical representative of a face

at least one pre-image with at least one vertex in D
Canonical representative of a face

choose the pre-image “closest” to the first Dirichlet neighbor
I. Iordanov & M. Teillaud

2D hyperbolic (periodic) triangulations

CGAL Dev Meeting 21 / 31
Face of $DT_M(S)$
Face of $DT_M(S)$
Outline

1. Introduction
2. Triangulations in the hyperbolic plane
3. Periodic triangulations in the hyperbolic plane
4. Data Structure
5. Incremental Insertion
6. Results
7. Future work
Point Location
Point Location
Incremental Insertion

Point Location

I. Iordanov & M. Teillaud

2D hyperbolic (periodic) triangulations
"hole" = topological disk
“hole” = topological disk
Point Insertion

Computations on translations

Dehn’s algorithm (slightly modified)
Suppose that the points in S are rational.

Input of the predicates can be images of these points under $\nu \in \mathcal{N}$.

$$g_k(z) = \frac{\alpha z + e^{ik\pi/4}\sqrt{2\alpha}}{e^{-ik\pi/4}\sqrt{2\alpha}z + \alpha}, \quad \alpha = 1 + \sqrt{2}, \quad k = 0, 1, \ldots, 7$$

- the Orientation predicate has algebraic degree at most 20
- the InCircle predicate has algebraic degree at most 72

Point coordinates represented with `CORE::Expr` → (filtered) exact evaluation of predicates
Outline

1 | Introduction

2 | Triangulations in the hyperbolic plane

3 | Periodic triangulations in the hyperbolic plane

4 | Data Structure

5 | Incremental Insertion

6 | Results

7 | Future work
Experiments

Fully dynamic implementation

→ Demo
Experiments

Fully dynamic implementation

→ Demo

1 million random points

- Non-periodic triangulation
 - Euclidean DT (double) \(\sim 1\) sec.
 - Euclidean DT (\texttt{CORE::Expr}) \(\sim 13\) sec.
 - Hyperbolic DT (CK) \(\sim 96\) sec.
 - Hyperbolic DT (\texttt{CORE::Expr}) \(\sim 265\) sec.

- Periodic triangulation
 - Hyperbolic periodic DT (\texttt{CORE::Expr}) \(\sim 69\) sec.
Experiments

Fully dynamic implementation

→ Demo

1 million random points

- Non-periodic triangulation
 - Euclidean DT (double) \(\sim 1\) sec.
 - Euclidean DT (\texttt{CORE::Expr}) \(\sim 13\) sec.
 - Hyperbolic DT (CK) \(\sim 96\) sec.
 - Hyperbolic DT (\texttt{CORE::Expr}) \(\sim 265\) sec.

- Periodic triangulation
 - Hyperbolic periodic DT (\texttt{CORE::Expr}) \(\sim 69\) sec.

Predicates

- 0.76\% calls to predicates involving translations in \(N\)
- responsible for 36\% of total time spent in predicates

Dummy points can be removed after insertion of 17–72 random points.
Outline

1. Introduction
2. Triangulations in the hyperbolic plane
3. Periodic triangulations in the hyperbolic plane
4. Data Structure
5. Incremental Insertion
6. Results
7. Future work
Future work

- Hyperbolic and periodic hyperbolic triangulations
 - Code is public: hosted on a common branch
 cgal-public-dev/Periodic_4_hyperbolic_triangulation_2-IIordanov
 - Documentation writing is underway
 - Submission for integration to CGAL imminent
Future work

- Hyperbolic and periodic hyperbolic triangulations
 - Code is public: hosted on a common branch
 cgal-public-dev/Periodic_4_hyperbolic_triangulation_2-IIordanov
 - Documentation writing is underway
 - Submission for integration to CGAL imminent

- Interface with Mesh_2 → periodic hyperbolic mesh
Future work

- Hyperbolic and periodic hyperbolic triangulations
 - Code is public: hosted on a common branch
cgal-public-dev/Periodic_4_hyperbolic_triangulation_2-IIordanov
 - Documentation writing is underway
 - Submission for integration to CGAL imminent
- Interface with Mesh_2 \rightarrow periodic hyperbolic mesh
- Periodic hyperbolic triangulations of regular surfaces of higher genus
 - research in progress
 - prototype code in private repository
 INRIA/Periodic_2g_hyperbolic_triangulation_2-IIordanov
Thank You!

Source code and Maple sheets available online:
https://members.loria.fr/Monique.Teillaud/DT_Bolza_SoCG17/